Contact Information	Email: andylee024@gmail.com Portfolio: andylee024.github.io Github: github.com/andylee024
Education	Swarthmore College, Swarthmore, PA
	B.S. Mathematics, Spring 2016
Work Experience	Uber ATG - Machine Learning / Motion Planning June 2016 - Present Advanced Technologies Group (ATG) is Uber's R&D arm for developing self-driving car technology.
	• Inverse Reinforcement Learning (IRL) Architect and implement IRL algorithm to process 1000+ hours of self-driving logs and algorithmically tune 100+ parameters of optimization-based motion planning system. Received patent for system.
	• Optimal Control Architect and implement trajectory-smoothing algorithm to transform noisy poses into human-like trajectories in order to generate human-like driving datasets for machine learning applications.
	• Deep Learning Simulation Architect and implement offline simulation system for validating end-to-end deep learning approaches for self-driving.
	Neurogenomics Laboratory - Scientific Collaborator Feb 2017 - March 2018 A computational biology lab at Carnegie Mellon University conducting research on the genetic mechanisms of Alzheimers disease and the epigenetics of aging.
	• Deep Learning Infrastructure Architect and implement general deep-learning pipeline that provide simple APIs for iterating quickly on computational biology experiments (dataset generation, model training, metrics reporting).
	• Deep Learning for Biology Led research effort to use Attention + RNNs to identify sequence motifs for CTCF binding sites using ENCODE datasets.
Technical Projects	Komorebi - Deep Learning Infrastructure Komorebi is a general deep-learning interfaces for tensorflow. It is designed to accelerate the ability to perform deep-learning experiments by specifying abstract interfaces for datasets, models, model trainers and metrics (i.e. components needed for running a deep learning experiment). See (https://github.com/andylee024/komorebi).
	Technical Notes (Machine Learning + Biology) I have written a number of technical notes on machine learning and biology topics (e.g. reinforcement learning, variational inference, amyloid-hypothesis in Alzheimer's). See (https://andylee024.github.io/).
Skills	Graduate Coursework (University of Pennsylvania): Machine Learning, Computational Learning Theory, Integrated Intelligence for Robotics, Randomized Algorithms
	Undergraduate Coursework: Real Analysis, Probability Theory, Advanced Statistics Software Languages (Strong): Python Software Languages (Intermediate): C++